
Abstract-This paper is to present a high order statistics-based 
adaptive interference cancel filter (AIC-HOS) to process 
evoked potential (EP). In conventional ensemble averaging 
method, experiments have to conduct repetitively to record 
the required data. In normalized LMS adaptive filter, 
inappropriate step size always causes deficiency. This AIC-
HOS system has none of the above disadvantages. This system 
was experimented in somatosensory evoked potential 
corrupted with EEG. Gradient type algorithm is used in this 
AIC-HOS structure to regulate the SNR of EEG and EP. This 
method is also simulated with visual evoked potential and 
audio evoked potential. The results obtained are satisfactory 
and acceptable in clinical usage. The AIC-HOS is superior to 
normalized LMS using adaptive filter in that it converges 
easily. Moreover, it is not sensitive to selection of step size in 
stabilities in convergency. 
Keywords - evoked potential, adaptive filter, high order 
statistics 

 
I. INTRODUCTION 

 

Evoked potential is an important issue when any of the 
visual, audio, and somatosensory nerve is stimulated. This 
external stimulus will conduct through the nervous system 
and reaches the cortex. This will then evoked the brain cell 
reflective electrical activities. 

The traditional method of processing evoked potential is 
averaging method. However, the result is highly sensitive to 
mild changes and the data collection experiment must be 
repeated several times in order to get a better recording 
result. Recording evoked potential is substantially 
improved through the use of adaptive filter [1][2]. This 
usual practice is to use normalized LMS in adaptive 
interference cancel filter. The most difficult problem is to 
obtain a good step size parameter. This is important for any 
slight changes in the step size parameter will jeopardize 
stability in convergency. Thus, AIC-HOS is suggested to 
solve this problem. 

The fundamental structure of AIC-HOS [3] uses high 
order statistics as primary and reference inputs. Gradient 
type algorithm is used to obtain new values for the adaptive 
filter. It is used commonly to analyze and eliminate noise in 
wideband and narrowband. Moreover it is also used in the 
analysis of high order spectra, where power spectrum is its 

2nd order spectrum. In poly-spectrum, gaussian signal 
components will be suppressed or eliminated, leaving non-
gaussian components substantially visible. Moreover, its 
auto-correlation function will also suppress phase 
information. Thus, high order statistics [4] can be used to 
analyze or rebuild non-minimum phase signal. The AIC-
HOS is not corrupted by uncorrelated white or colored 
gaussian noise source and is not so sensitive to step size 
changes. AIC-HOS is successfully used to compare 
normalized LMS (AIC-NLMS) in step size sensitivity and 
in different signal-noise-ratio (SNR) EEG signals. 
 

II. METHODOLOGY 

 
The block diagram structure of AIC-HOS is shown in 

Fig.1. 
 

 

Fig. 1. The block diagram structure of AIC-HOS 
 
Let )(kx  and )(kz  denote primary input and reference 

input, satisfying 
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where )(ks  denotes signal of interest, )(kI  is non-
gaussian interference, and )(kw  is non-gaussian process 

signal. 
    )(knp  and )(knr  are mean measurement noise, 

stationary, zero-mean, white or colored gaussian process. 
Moreover, we assume that the relationship between the 
interference signal and the reference signal is a LTI 
transformation so that 
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  Let )(ky  be the adaptive filter output, satisfying 
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where N is the number of taps and vector )}({ nh=fH  

for n= 0,1,…,N-1 is the adaptive filter coefficients.  
To develop the AIC-HOS algorithm, we assume that 

there exists at least one order n (n>2) such that the nth 
order cumulants is not zero. Under this assumption, we find 
the fourth-order joint cumulants of primary input and 
reference input signal, ),,( 321 mmmCxzzz  and 

),,( 321 mmmCzzzz . Using (4), the cumulant of adaptive 

filter output can be rewritten as  
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Then the criterion of goodness is defined as the sum of 
the squared errors between two cumulants, thus 
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We can rewrite (6) as matrix form 
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The gradient of the criterion is given by 
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Then the weighted update equation is 
    )()()1( kkk fff HH ∇−=+ µ                            (9) 

where the range of step size is chosen as 
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where α is the adaptive positive constant. 
 

III. RESULTS 
 

Data collected from somatosensory evoked potential used 
in this simulation. First, a set of 4000 data of SEP was 
processed using averaging method and was designated as 
the standard pattern. This was mixed with EEG signal to 
produce two sets of input data with SNR of –30 db and –5 
db. These two sets are used to represent AEP and VEP 
respectively. 

We compared the results obtained from using AIC-HOS 
and AIC-NLMS by changing the number of taps of the AR 
equations and the adaptive step size parameter. The mean 
square error (MSE) of these results are obtained after 
comparing them with the standard pattern. Table I is the 
MSE result for EEG signal with SNR equal –30 db. Table 

II is the MSE result for –5 db. In these tables, N is the 
number of taps of AR equation, µ is the adaptive step size 
parameter. 
 

TABLE I 

THE MEAN SQUARE ERROR OF EP AFTER PROCESSING FOR –30 db 

Mean square error (MSE) The taps of 

AR equation

Adaptive 

step size AIC-HOS AIC-NLMS 

μ=0.9 0.0755 0.0865 

μ=0.5 0.0527 0.0568 

N=8 

μ=0.1 0.0253 0.0258 

μ=0.9 0.0866 0.1344 

μ=0.5 0.0714 0.0824 

N=16 

μ=0.1 0.0488 0.0260 

μ=0.9 0.1480 0.1790 

μ=0.5 0.1055 0.1104 

N=24 

μ=0.1 0.0335 0.0302 

TABLE II 

THE MEAN SQUARE ERROR OF EP AFTER PROCESSING FOR –5 db 

Mean square error (MSE) The taps of 

AR equation

Adaptive 

step size AIC-HOS AIC-NLMS 

μ=0.9 0.0059 0.0134 

μ=0.5 0.0046 0.0097 

N=8 

μ=0.1 0.0044 0.0043 

μ=0.9 0.0107 0.0185 

μ=0.5 0.0089 0.0134 

N=16 

μ=0.1 0.0050 0.0051 

μ=0.9 0.0205 0.0219 

μ=0.5 0.0168 0.0157 

N=24 

μ=0.1 0.0063 0.0058 

 
Fig. 2. is the result of EP using different adaptive step 

size processed by AIC-HOS and AIC- NLMS with the taps 
of AR equation equal 16. 
 

Fig. 2. The result of EP using different adaptive step size parameter 

processed by AIC-HOS and AIC- NLMS  
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The raw EP was then processed using AIC-HOS and 

AIC-NLMS to obtain their SNR. Maximum likelihood 
estimation was used to obtain SNRML [5] and correlation 
coefficient was applied to obtain SNRr [6]. These results 
are shown in Table III for SNRML, Table IV for SNRr. 

 
TABLE III 

THE SIGNAL NOISE RATIO (SNRML) OF EP AFTER PROCESSING 

Signal-Noise-Ratio (SNRML) The SNR of 

input EEG 

Adaptive 

step size AIC-HOS AIC-NLMS 

μ=0.9 0.5895 0.1794 

μ=0.5 0.9196 0.3468 

-30 db 

μ=0.1 2.8165 1.8442 

μ=0.9 75.8680 30.9434 

μ=0.5 113.8590 50.8009 

-5 db 

μ=0.1 326.1297 147.3680 

TABLE IV 

THE SIGNAL NOISE RATIO (SNRr) OF EP AFTER PROCESSING 

Signal-Noise-Ratio (SNRr) The SNR of 

input EEG 

Adaptive 

step size AIC-HOS AIC-NLMS 

μ=0.9 0.6495 0.1855 

μ=0.5 1.0529 0.3654 

-30 db 

μ=0.1 6.6500 2.6277 

μ=0.9 96.5250 38.6388 

μ=0.5 181.9523 73.2443 

-5 db 

μ=0.1 577.0666 396.3891 

 
IV. DISCUSSION 

 
In Table I-II, the results significantly review that with the 

same number of taps of AR equation, AIC-HOS is more 
stable to AIC-NLMS when adaptive step size parameter 
changes. This is especially significant for taps equal 16. 
The convergence condition of AIC-NLMS is highly 
influenced by µ. However, for N equal 24, both methods 
are effected by µ. But for smaller µ, such as µ=0.1, AIC-
NLMS has better results. 

In Fig. 2., when N equal 16, with µ=0.9 or 0.5, the 
convergence property of HOS is much better than NLMS. 
When µ=0.1. EEG signal can be viewed as a changing 
narrowband noise. HOS is effective in suppressing 
wideband and narrowband interference. HOS out perform 
NLMS in this respect. 

In Table III-IV, in EP application, the output from AIC-
HOS has better SNR. But both methods, HOS or NLMS, 
are influenced by adaptive positive constant α  and 
forgetting factor in cumulants. 
 

V. CONCLUSION 

 
Finally, from experiment and simulation, AIC-HOS has 

better attribute in converging and is not significantly 
affected by step size parameter. Thus, AIC-HOS is a good 
choice to be use in EP and other biomedical signal that 
need to eliminate wideband and narrowband interference.  
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